Section Handout #13
Cheat Sheet
	Class Employee: 	
 def __init__(self, years):
 self.__years = years

 def get_hours(self):
 return 40

 def get_salary(self):
 return 50000

 def get_vacation_days(self):
 return 10 + 2 * self.__years

 def get_years(self):
 return self.__years

class Lawyer (Employee):
 def __init__(self, years):
 super(Lawyer, self).__init__()

 def get_salary():
 return
 super(Lawyer, self).get_salary()
 + 5000.0 * get_years();

 def get_vacation_days():
 return
 super(Lawyer,
 self).get_vacation_days() + 5

[bookmark: OLE_LINK3][bookmark: OLE_LINK4]Inheritance
class name(superclass):

· [bookmark: _GoBack]inheritance:	Forming a new class based on an existing class.
· extend:	To inherit from another class.
· superclass:	The "parent" class; the class being extended.
· subclass:	The "child" class; the class extending another.
· override:	To replace a superclass method with a new one.

super keyword
Calling an overridden method from the superclass:
super(classname, self).method(parameters)

Critter classes
class name (Critter):
 fields

 constructor

 def eat(self):
 statement(s) that return True (eat) or False (don't eat)

 def fight(self, opponent):
 statement(s) that return either ROAR, POUNCE, or SCRATCH

 def get_color():
 statement(s) that return a Color

 def get_move():
 statement(s) that return either NORTH, SOUTH, EAST, WEST, or CENTER

 def __str__():
 statement(s) that return a String

	Your critter classes inherit several other methods. You can ignore them for the main animals Ant, Bird, Hippo, and Vulture. But for a creative WildCat, you may want to use them. Here are some of the methods:
def getx() # returns your Critter's x coordinate
def gety() # returns your Critter's y coordinate
def get_width() # returns the width of the board
def get_height() # returns the height of the board
def get_neighbor(dir) # returns the critter 1 square away in given direction
	For example, to find out whether a critter's x-coordinate is at least 5, or to find out whether a Frog is in the square east of your critter, you could write code like the following in your get_move method:
if (getx() >= 5): if (get_neighbor(EAST) == "F"):

 Questions
Critter Classes
1.	Define a Critter class named Rabbit with the following behavior:
	constructor
	__init__()

	color
	dark gray (Color.DARK_GRAY)

	eating behavior
	alternates between True and False (True, False, True, ...)

	fighting behavior
	if opponent is a Bird or Vulture, then scratch; otherwise, roar

	movement behavior
	hops in an L-shaped pattern:
 first north twice, then south twice, then east twice, and repeat

	str
	"v"

[image:]

2.	Define a Critter class named Frog with the following behavior:
	constructor
	__init__(self, age)
The age passed will be between 1 and 9 inclusive.

	color
	green

	eating behavior
	never eats (this is the default eating behavior)

	fighting behavior
	always forfeits in a fight (this is the default fighting behavior)

	movement behavior
	moves east sometimes, or stays put (center), based on the frog's age:

If the frog is 1 year old, moves to the east every move.
E, E, E, E, E, E, E, E, E, E, ...

If the frog is 2 years old, moves to the east once every 2 moves.
C, E, C, E, C, E, C, E, C, E, ...

If the frog is 3 years old, moves to the east once every 3 moves.
C, C, E, C, C, E, C, C, E, C, ...
...
If the frog is 9 years old, moves to the east once every 9 moves.
C, C, C, C, C, C, C, C, E, C, ...

	__str__
	"F"

[image:]
(continued on back page)
Questions (continued)

3.	Define a Critter class named Elephant with the following behavior:
	constructor
	__init__(self, attack)
(attack will be ROAR, POUNCE, or SCRATCH)

	color
	gray ("gray")

	eating behavior
	upon birth, decides either to always eat (True) or never eat (False) throughout its lifetime

	fighting behavior
	uses the attack that was passed to the constructor

	movement behavior
	prefers to move west if it is not in the horizontal center of the world;
otherwise, prefers north if it is not in the vertical center of the world;
but will not move onto a square occupied by another Elephant

	__str__
	"J" if this Elephant is hungry (if eat would return True); otherwise "j"

	The constructor accepts a parameter specifying which attack it should use when fight is called on that object. Also, when it is born, each Elephant object should make a random choice that it will either always eat (True) or never eat (False) during its lifetime. A given Elephant object should remember its choice and always return this same choice throughout its lifetime, no matter how many times eat is called on it.
	Out of fear of predators, all Elephants try to move to the center of the simulation world to be together in a herd. They do this by first moving west until they reach the central x-coordinate on the board (half the board's width), then moving north until they reach the central y-coordinate on the board (half the board's height). Because mating leaves two critters vulnerable for several moves, Elephants do not want to mate; no Elephant will move onto a square occupied by another Elephant. If the Elephant's otherwise preferred move is occupied by another Elephant, it will instead choose to stay still (a move of CENTER).
	To implement the movement behavior described previously, you will need to use some of the other inherited methods described on the Cheat Sheet and on page 4 of the assignment spec.

[image:]
Solutions
1.
this solution wouldn't get full credit for commenting

class Rabbit(Critter):
 def __init__(self):
 self.__moves = 0
 self.__hungry = False

 def eat(self):
 self.__hungry = not self.__hungry # reverse the boolean value
 return self.__hungry

 def fight(self, opponent):
 if (opponent == "^" or opponent == ">" or
 opponent or "V" or opponent == "<"): # a Bird or Vulture
 return SCRATCH
 else:
 return ROAR

 def get_color(self):
 return "dark gray"

 def get_move(self): # "hops" north 2, south 2, east 2
 self.__moves += 1
 if (self.__moves > 6):
 self.__moves = 1 # start over

 if (self.__moves <= 2): # 1st or 2nd move
 return NORTH
 else if (__moves <= 4): # 3rd or 4th
 return SOUTH
 else: # 5th or 6th
 return EAST

 def __str__():
 return "V"

2.
this solution wouldn't get full credit for commenting

class Frog(Critter):
 def __init__(self, age):
 self.__age = age
 self.__count = 0

 def get_color():
 return "green"

 def get_move():
 __self.__count += 1
 if (self.__count >= age): # go EAST once every 'age' moves
 __self.__count = 0
 Return EAST
 else:
 return CENTER

 def __str__():
 return "F"

Solutions (continued)
3.
this solution wouldn't get full credit for commenting

Elephants move west, then north, until they reach the world's center.
class Elephant(Critter)
 def __init__(self, attack):
 self.__attack = attack
 self.__random_num = randint(0, 1) # choose random value for all future eats

 def eat(self):
 # 50/50 chance based on above code
 return (self.__random_num == 1)

 def fight(self, opponent):
 return self.__attack

 def get_color():
 return "gray"

 def get_move():
 direction = CENTER
 if (getx() != self.get_width() // 2):
 direction = WEST
 else if (gety() != self.get_height() // 2):
 direction = NORTH

 neighbor = get_neighbor(direction) # halt if an Elephant is there
 if (neighbor == self.__str__()):
 direction = CENTER
 return direction

 def __str__():
 if (random_num == 1):
 return "J"
 else:
 return "j"

Solutions from section #12
4.
Class BookData:
	def __init__(self, author, title, rating):
		self.__author = author
		self.__title = title
		self.__rating = rating

	def get_title(self):
	return self.__title

	def get_author(self):
		return self.__author

	def get_rating(self):
		return self.__rating

	def set_rating(self, new_rating):
		self.__rating = new_rating

def main():
book = BookData("Rowling", "Harry Potter", 5)
	print(book.get_title())
	book.set_rating(10)
	print(book.get_rating())

5.
class AdmissionsEntry:
 def __init__(self, id, first, last, flagged, ratings):
 self.__id = id
 self.__first_name = first
 self.__last_name = last
 self.__flagged = flagged
 self.__ratings = ratings

 def rate(self, rating):
 self.__ratings.append(rating)

 def flag(self):
 self.__flagged = True

 def get_id(self):
 return self.__id

 def get_rating():
 rating = 0
 for rate in self.__ratings:
 rating += rate
 return rating / len(self.__ratings)

def main():
 lines = open("data.txt").readlines()
 candidates = []
 avg_rating = 0
 for line in lines:
 line = line.split(5)
 entry = AdmissionsEntry(line[0], line[1], line[2], line[3], line[4])
 avg_rating += entry.get_rating()

 print("The average for all candidates: " + str(avg_rating / len(candidates)))
image1.png

image2.png

image3.png
W if not in horizontal center
N if not in vertical center
Cif next to another elephant

