Cheat Sheet
Declaring lists
name = [value] * length
name = []
[bookmark: _GoBack]name = [value, value, ..., value]

Example:
numbers = [0] * 10 # [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
numbers2 = [] # []
numbers3 = [18, 7, 1, -3, 29, 4]
	index
	0
	1
	2
	3
	4
	5

	value
	18
	7
	1
	-3
	29
	4

Using lists
name[index] = value # setting
othername = name[index] # getting

Example:
	index
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9

	value
	0
	0
	0
	42
	0
	0
	0
	23
	0
	0

numbers[3] = 42
numbers[7] = 23
	Lists as parameter

Example:
def average(nums):
 sum = 0
 for i in range(len(nums)):
 sum += numbers[i]
 return sum / len(nums)

	List as return value

Example:
def count_digits(n):
 counts = [0] * 10
 while n > 0:
 counts[n % 10] += 1
 n = n // 10
 return counts

	List traversals
for i in range(len(list)):
 do something with list[i]
 ...

Example:
counts = [10, 30, 20, 4]
sum = 0
for i in range(len(counts)):
 sum += counts[i]
	String traversals
for i in range(len(string):
 do something with string[i]
 ...

Example:
phrase = "the quick brown fox"
capital_letters = 0
for i in range(len(phrase)):
 letter = phrase[i]
 if letter >= 'A' && letter <= 'Z':
 capital_letters += 1

List functions
	Functions
	Description

	append(x)
	Add an item to the end of the list. Equivalent to a[len(a):] = [x].

	extend(L)
	Extend the list by appending all the items in the given list. Equivalent to a[len(a):] = L

	insert(i, x)
	Inserts an item at a given position. i is the index of the element before which to insert, so a.insert(0, x) inserts at the front of the list.

	remove(x)
	Removes the first item from the list whose value is x. Errs if there is no such item.

	pop(i)
	Removes the item at the given position in the list, and returns it. a.pop() removes and returns the last item in the list.

	clear()
	Remove all items from the list.

	index(x)
	Returns the index in the list of the first item whose value is x. Errs if there is no such item.

	count(x)
	Returns the number of times x appears in the list.

	sort()
	Sort the items of the list

	reverse()
	Reverses the elements of the list

	copy()
	Return a copy of the list.

Questions
List Simulation	
1.	Simulate the execution of the following function with each of the following lists passed as its parameter:
def mystery1(list):
 x = 0
 for i in range(1, len(list):
 y = list[i] - list[0]
 if y > x:
	List	Value returned
[5]	_______________________
[3, 12]	_______________________
[4, 2, 10, 8]	_______________________
[1, 9, 3, 5, 7]	_______________________
[8, 2, 10, 4, 10, 9]	_______________________

 x = y
 return x

2.	Simulate the execution of the following function with each of the following lists passed as its parameter:
def mystery2(nums):
 for i in range(0, len(nums) – 1):
 if nums[i] > nums[i + 1]:
 nums[i + 1] += 1
	List	Final list contents
[8]	_______________________
[14, 7]	_______________________
[7, 1, 3, 2, 0, 4]	_______________________
[10, 8, 9, 5, 5]	_______________________
[12, 11, 10, 10, 8, 7]	_______________________

3.	Simulate the execution of the following function with each of the following lists passed as its parameter:
def mystery3(data):
 for i in range(1, len(data) – 1):
 if data[i] == data[i - 1] + data[i + 1]:
 data[i] = data[i] // 2

	List	Final list contents
[3, 7, 4]	_______________________
[0, 3, 7, 4, 1]	_______________________
[4, 3, 8, 5, 1, 2]	_______________________
[2, 1, 5, 4, 10, 6, 2]	_______________________
[1, 2, 1, 2, 1, 2, 1]	_______________________

 (continued on back page)

Questions (continued)
List Traversals	
4.	Write a function named find_min that returns the minimum value in an list of integers. For example, if a list named list contains the values [16, 12, 25, 44], the call of find_min(list) should return 12. You may assume that the list has at least one element.
5.	Write a function named is_sorted that accepts a list of floats as a parameter and returns True if the list is in sorted (nondecreasing) order and False otherwise. For example, if lists named list1 and list2 store [16.1, 12.3, 22.2, 14.4] and [1.5, 4.3, 7.0, 19.5, 25.1, 46.2] respectively, the calls is_sorted(list1) and is_sorted(list2) should return False and True respectively. Assume the list has at least one element. A one-element list is considered to be sorted.
6. 	Write a function remove_even_length that takes a list of strings as a parameter and that removes all of the strings of even length from the list. For example, if the list initially stores these values:
["to", "be", "or", "not", "to", "be", "hamlet"]
	After being passed to remove_even_length, it should store the following values:
["not"]
7. 	Write a function stutter that takes a list of strings as a parameter and that replaces every string with two of that string. For example, if the list stores the following values before the function is called:
["how", "are", "you?"]
	After the call, it should store the following values:
["how", "how", "are", "are", "you?", "you?"]
8. 	Write a function remove_shorter_strings that takes a list of strings as a parameter and that removes from each successive pair of values the shorter string in the pair. For example, suppose that a list called list contains the following values:
["four", "score", "and", "seven", "years", "ago"]
	In the first pair, "four" and "score", the shorter string is "four". In the second pair, "and" and "seven", the shorter string is "and". In the third pair, "years" and "ago", the shorter string is "ago". Therefore, the call remove_shorter_strings(list) should remove these, leaving the list as follows:
["score", "seven", "years"]
	If there is a tie (both strings have the same length), your function should remove the first string in the pair. If there is an odd number of strings in the list, the final value should be kept in the list.

Lists for Counting and Tallying	
9.	Write a function named count_last_digits that accepts a list of integers as a parameter and examines its elements to determine how many end in 0, how many end in 1, how many end in 2 and so on. Your function will return a list of counters. The count of how many elements end in 0 should be stored in its element [0], how many of the values end in 1 should be stored in its element [1], and so on.
	For example, if a list named list contains the values [9, 29, 44, 103, 2, 52, 12, 12, 76, 35, 20], the call of count_last_digits(list) should return the list [1, 0, 4, 1, 1, 1, 1, 0, 0, 2] because 1 element ends with 0 (20), no elements end with 1, 4 elements end with 2 (2, 52, 12, and 12), etc.
10.	Write a function named vowel_count that accepts a String as a parameter and produces and returns a list of integers representing the counts of each vowel in the String. The list returned by your function should hold 5 elements: the first is the count of As, the second is the count of Es, the third Is, the fourth Os, and the fifth Us. Assume that the string contains no uppercase letters.
	For example, the call vowel_count("i think, therefore i am") should return the list [1, 3, 3, 1, 0].

11. Write a list named sum5 that accepts an list of integers as a parameter and returns a new lsit of length 5 that contains a series of sums. The first value in the result should be the sum of every fifth number in the list starting with the first number (1st, 6th, 11th, 16th, etc), the second value in the result should be the sum of every fifth number in the list starting with the second number (2nd, 7th, 12th, 17th, etc), the third value in the result should be the sum of every fifth number in the list starting with the third number (3rd, 8th, 13th, 18th, etc), and so on.
Advanced List Programming
12.	Write a function named rotate_right that accepts a list of integers as a parameter and rotates the values in the list to the right (i.e., forward in position) by one. Each element moves right by one, except the last element, which moves to the front. For example, if a variable named list refers to a list containing the values [3, 8, 19, 7], the call of rotate_right(list) should modify it to store [7, 3, 8, 19]. A subsequent call of rotate_right(list) would leave the list as follows: [19, 7, 3, 8]
13.	Write a function named stretch that accepts a list of integers as a parameter and returns a new list twice as large as the original, replacing every integer from the original list with a pair of integers, each half the original. If a number in the original list is odd, then the first number in the new pair should be one higher than the second so that the sum equals the original number. For example, if a variable named list refers to an list storing the values [18, 7, 4, 24, 11], the call of stretch(list) should return a new list containing [9, 9, 4, 3, 2, 2, 12, 12, 6, 5]. (The number 18 is stretched into the pair 9, 9, the number 7 is stretched into 4, 3, the number 4 is stretched into 2, 2, the number 24 is stretched into 12, 12 and the number 11 is stretched into 6, 5.)

Solutions
	1.
	List
	Value Returned

	
	[5]
[3, 12]
[4, 2, 10, 8]
[1, 9, 3, 5, 7]
[8, 2, 10, 4, 10, 9]
	0
9
6
8
2

	2.
	List
	Final Contents

	
	[8]
[14, 7]
[7, 1, 3, 2, 0, 4]
[10, 8, 9, 5, 5]
[12, 11, 10, 10, 8, 7]
	[8]
[14, 8]
[7, 2, 3, 3, 1, 4]
[10, 9, 9, 6, 6]
[12, 12, 11, 11, 9, 8]

	3.
	List
	Final Contents

	
	[3, 7, 4]
[0, 3, 7, 4, 1]
[4, 3, 8, 5, 1, 2]
[2, 1, 5, 4, 10, 6, 2]
[1, 2, 1, 2, 1, 2, 1]
	[3, 3, 4]
[0, 3, 3, 2, 1]
[4, 3, 4, 2, 1, 2]
[2, 1, 2, 4, 5, 6, 2]
[1, 1, 1, 1, 1, 1, 1]

4. (two solutions shown)
	[bookmark: OLE_LINK5][bookmark: OLE_LINK6]def find_min(list):
 min = list[0]
 for i in range(1, len(list)):
 if list[i] < min:
 min = list[i]
 return min

	def find_min(list):
 mini = list[0]
 for i in range(1, len(list)):
 mini = min(min, list[i])
 return mini

5.
def is_sorted(list):
 for i in range(0, len(list) – 1):
 if list[i] > list[i + 1]:
 return False
 return True

6.
def remove_even_length(list):
 i = 0
 while i < len(list):
 if len(list[i]) % 2 == 0:
 list.remove(i)
 else:
 i += 1

7.
def stutter(list):
 i = 0
 while i < len(list):
 list.insert(i, list[i])
 i += 2

8.
def remove_shorter_strings(list):
 i = 0
 while i < len(list) - 1:
 first = list[i]
 second = list[i + 1]
 if len(first) <= len(second):
 list.remove(i)
 else:
 list.remove(i + 1)
 i += 1

9.
def count_last_digits(list):
 count = [0] * 10
 for i in range(len(list)):
 digit = list[i] % 10
 count[digit] += 1
 return count
[bookmark: OLE_LINK7][bookmark: OLE_LINK8]10. (two solutions shown)
def vowel_count(text):
 counts = [0] * 5
 for i in range(len(text)):
 c = text[i]
 if (c == 'a'):
 counts[0] += 1
 elif (c == 'e'):
 counts[1] += 1
 elif (c == 'i'):
 counts[2] += 1
 elif (c == 'o'):
 counts[3] += 1
 elif (c == 'u'):
 counts[4] += 1
 return counts

def vowel_count(text):
 vowels = ['a', 'e', 'i', 'o', 'u']
 counts = [0] * 5
 for i in range(len(text)):
 for j in range(0, len(vowels)):
 if text[i] == vowels[j]:
 counts[j] += 1
 return counts

Section Handout #7
11. (two solutions shown)

def sum5(list):
 result = [0] * 5
 for i in range(0, len(list)):
 result[i % 5] += list[i]
 return result

def sum5(list):
 result = [0] * 5
 for i in range(0, 5):
 for j in range(i, len(list)):
 result[i] += list[j]
 return result

12.
def rotate_right(list):
 last = list[- 1]
 for j in range(list[-1], 0, -1):
 list[j] = list[j - 1]
 list[0] = last
13.
def stretch(list):
 result = [0] * (2 * len(list))
 for i in range(0, len(list)):
 result[2 * i] = list[i] // 2 + list[i] % 2
 result[2 * i + 1] = list[i] // 2
 return result
